
IAD-AI29 267 DIRECT DIGITAL TARGETING APPLICATIONS AND EXPERIMENTS 1/1
U) ROME RESEARCH4 CORP NEW HARTFORD NY M J GILLOTTE
JAN 83 RRC-82-8 RADC-TR-83-14 F30RD2-80-C-0283

UNCLASSI FTED FIG 9/2 NE,,nnnnnEnEEn
nnunnnnnunuunn...
nnunnnunnnnnnn.fllfl
*IIIIIIIlflf EN

. Ig-

mii

ILL4 jj,.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS 2Q63-A

~IM

it

A

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (ft" Dea eered)

REPORT DOCUMENTATION PAGE READ ISN UCTIONS
BEFORE COMPLETING FORM

. REPORT NUVIIrR 2. GOVT ACCSSION NO. 3. RECIPIENT'S CATALOG NUMBER

RADC-TR-83-14 A I- I
4. TITLE (dad Subtil) 5. yl Ov~Ft *PORT 1P'RIoO cvato

DIRECT DIGITAL TARGETING APPLICATIONS Fina Tecmica epor

AND EXPERIMENTS 27 Aug 80 - 30 Jun 82
S. PERFORMING ONG. REPORT NuMIER

RRC 82-8
7: AUTNOR(sJ S. CONTRACT Oft GRANT NUMisenfa)

Dr. Michale J. Gillotte, Jr. y30602-80-C-0283

9. PERFORMING ORGANIZATION NAME AND AOOISS 10. PROGRAM ELEMENT. PROJECT. TASKARETA S WORK UNIT NUMBEIRS

Rome Research Corporation
62702F

Seneca Plaza, Route 5 49723

New Hartford NY 13413 45941723
II. CONTROLLING OFFICE NAME AND AGONIESi 12. REPORT CATE

Rome Air Development Center (IRRA) ,T~fl l QR
Griffiss AFB NY 13441 53. NUMIRWOF PAGES

14. MONITORING AGENCY NAME & AOORESS(I dllient trom Coneroilln Office) IS. SECURITY CLASS. (at thi trepr)

Same UNCLASSIFIED
is.' OC ASSIFICATION/DOWNGRADING

A SCHOULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. OISTRIGUTION STATEMENT (of the abstract entered in Block 20, If dliffeent from Repot)

Same

1. SUPPLEMENTARY NOTES

RADC Project Engineer: James Sieffert (IRRA)

IS. KEY WORDS (Coneine an wvevwe side If neoew and Idetil, by block number)

Photogrammetry Split Screen
Softcopy Mensuration
Point Transfer
Sarge Image Roaming

0. ABSTRACT (Continue on Parses@ *ide If fcoeoAS sad identlf), b block mube)

This document represents the final technical report for Contract F30602-
80-C-0283 to the Rome Air Development Center (RADC) to provide the Experi-
mental Photogrammetric Facility (EPF) with an upgraded Digital Image Target

Location demonstration capability. The Softcopy Mensuration Software was
modified to provide monoscopic mensuration capability. The DeAnza IP-8500
Display System was purchased and added to the EPF. The architecture of the
IP-8500 permits large image roaming which is necessary to perform (over)

Do A. 1473 EDIrION oP I Nov 63 is asoLETE (UNCLASSIFIED)
SECURITY CLASSIFICATION OF THIS PAGE (Wen DONS n towe

>4,.

UNCLASSIFIED

CUR,,Y CLASIPICATION OP TW*S PAG ,. Ieae . ,.

point transfer experiments with large digital bagery.

The software was designed In a modular fashion to permit ease in expanding

the system to include multiple sensor models or even multiple implementa-
tions of the same sensor models. With this design, experiments could be

conducted to compare the output object space coordinates using "improved"
and "unimproved" sensor position information. Display software is inde-
pendent of the sensor model and the image warping processes are designed
to be a separate module independent of the sensor..

Large image roaming with image zooming was mplemented as a baseline modul
which permits viewing any 512 by 512 pixel window of an arbitrarily large
image under the control of the trackball. The design includes the use of
a display status file so that the software is aware of the display
register settings between modules, thus, the display will maintain the
same view when entering a new (large image roaming) display module as was
viewed when exiting a previous (large ima-e roaming) display module.

A

*.4

UNCLASSIFIED
$1CURITY CLASSPICA OU OF P A ' ,AG hen Doem Enterod)

-AO

I
TABLE OF CONTENTS

Section Page

1. INTRODUCTION1-1

1.1 REPORT ORGANIZATION1-2

2. UNIX SYSTEM OVERVIEW2-1

2.1 BACKGROUND OF THE UNIX OPERATING SYSTEM 2-1

2.2 THE C PROGRAMMING LANGUAGE 2-2

2.3 THE SHELL - THE UNIX/USER INTERFACE 2-3

2.4 SOURCE CODE CONTROL SYSTEM AND MAKE FACILITY 2-5

3. DEANZA IP-8500 DISPLAY SYSTEM 3-1

4. APPLICATION SOFTWARE4-1

4.1 DISPLAY SOFTWARE 4-2

4.1.1 Image Roaming4-3

4.1.1.1 Tessellated Image Storage4-4

4.1.1.2 High Speed File System4-6

4.1.1.3 DeAnza IP-8500 Split Screen Capability4-8

4.1.2 Split Screen With Roaming4-10

4.1.3 Display Status File4-11

4.1.4 Re-entry 4-11

4.2 POINT POSITIONING/MENSURATION SOFTWARE4-12

4.2.1 Softcopy Mensuration 4-14

4.2.2 AFES Mensuration4-17

4.3 DIGITAL TERRAIN ELEVATION DATA4-20

4.4 IMAGE COMPRESSION AND DECOMPRESSION. 4-20

5. THE DDT SYSTEM ADMINISTRATIVE CONTROL 5-1

5.1 CENTRALIZED SOFTWARE CONTROL 5-1

5.1.1 File Ownership 5-1

ti

5.1.2 Source Code Control System (SCCS). 5-2

5.1.3 File Editing 5-3

5.2 SYSTEM UPDATE 5-3

5.2.1 File dependencies. 5-3

5.2.2 Make commanda. 5-4

5.2.3 Placing a Command Under DDT Make Control 5-5

6. CONCLUSIONS AND RECOMMENDATIONS 6-1

i ____v

1. INTRODUCTION

This document represents the Final Technical Report for Contract F30602-

80-C-0283 to the Rome Air Development Center (RADC) to provide the

Experimental Photogrammetric Facility (EPF) with an upgraded Digital Image

Target Location demonstration capability. This upgrade includes the

modification of the Softcopy Mensuration Software (originally implemented

under another contract by another contractor) to provide monoscopic

mensuration capability. To further enhance the point transfer requirements, a

new state-of-the-art display configuration was purchased and installed in the

EPF. This display, the DeAnza IP-8500 Display System, is designed to permit

the expansion of the display memory to 4 megabytes for display purposes and

and additional 1 megabytes for use as "scratch-pads". The IP-8500, with its

split screen mode permits large image roaming which architecture of the

previous display system on the EPF (COMTAL 8300) could not support.

The software was designed in a modular fashion to permit ease in

expanding the system to include multiple sensor models or even multiple

implementations of the same sensor models. With this design, experiments

could be conducted to compare the output object space coordinates using

"improved" and "unimproved" sensor position information. Display software is

independent of the sensor model and the image warping processes are designed

to be a separate module independent of the sensor (although the warping

parameters could be derived using the sensor characterists).

Large image roaming with image zooming was implemented as a baseline

module which permits viewing any 512 by 512 pixel window of an arbitrarily

large image under the control of the trackball. This large image roaming

capability was implemented so that the image could be loaded using operator

specified coordinates thus permitting that the initial view window have any

arbitrary (operator specified) coordinate as its upper left cortner. 71e

design also includes the use of a display status file so that the software is

1-1

* -,. .*

aware of the display register settings between modules, thus, the display will

maintain the same view when entering a new (large image roaming) display

module as was viewed when exiting a previous (large image roaming) display

module.

The operating system used for the implementation of the DDT system is the

Programmers' Workbench version of UNIX (PWB/UNIX) as provided by Bell

Laboratories. To enhance its capabilities, software developed by the

University of California at Berkley was integrated into the PWB/UNIX. UNIX

was used as the operating system because of the display and mensuration

software which was implemented under UNIX by the AFES contract. This

operating system, in addition to the use of existing application software, was

also modular in a fashion which makes it easier to conduct experiments using

portions of the application software, or to use the application software as a

complete unit.

The use of PWB/UNIX also made it easier to control the software

development during this contract and will make it easier for RADC to maintain

the software after the completion of this contract. The software developed

during this contract includes administrative tools which include the Source

Code Control System (SCCS) and the Make utility. These two intricate tools

are integrated into the DDT system administrative control structure.

In addition to the photogrammeteric application programs, the DDT system

also includes software pertaining to image compression and decompression as

required by the statement of work.

1.1 REPORT ORGANIZATION

* Section 2 in this document discusses the operating system PWB/UNIX in

greater detail than this introduction.

1-2

4 -I-5

* Section 3 discusses the DeAnza IP-8500 Display System.

* Section 4 discusses the application programs implemented and integrated

into the DDT system.

" Section 5 provides an overview of the Administrative Controls of the DDT

system.

" Section 6 consists of conclusions pertaining to the accomplishments of

this contract and also provides recommendations of ways to improve and

complete the DDT system.

1-3

2. UNIX SYSTEM OVERVIEW

The DDT system design builds on the UNIX operating system. UNIX provides

an environment in which program development and system integration is

extremely straightforward. It strongly encourages and extensively supports

modular development. These are the requirements of the DDT system in which

flexibility without sacrificing ease of use is one of the most important

criteria.

A wide variety of very powerful and flexible programming tools have also

been developed for use under UNIX. These tools make systems very easy to

manage and control. The UNIX operating system itself and a few of the more

important programming tools are described in the following paragraphs.

2.1 BACKGROUND OF THE UNIX OPERATING SYSTEM

The UNIX operating system dates back to 1969 when Ken Thompson of Bell

Laboratories began creating it on a PDP-7 minicomputer. His primary goal and

that of the others that soon joined him in his work was to create an

environment in which they could comfortably and effectively pursue their

programming research work. UNIX therefore became unique in that the major

emphasis was not given solely to running programs but to creating them. Most

operating systems do a good job of efficiently running programs but present

many obstacles to efficient programming. Insufficient effort is usually made

when designing and building the operating system to provide a friendly

environment for the programmer. This is of particular Importance to the

programmer whose prime motivation is not in programming per se but in using

programming as a tool in research and development in a variety of application

areas. The authors of UNIX placed special emphasis on the needs of the

programmer and as a result have created a very sophisticated operating system

that is surprising in its simplicity and yet very general in application.

These characteristics make it extremely intelligible and easy to use.

2-1

The basic philosophy of UNIX is to provide the necessary operating system

functions consisting of a file system and an environment in which progras can

be developed and executed. It was the firm belief of the authors that an

operating system should not be concerned with providing functions that are

specific to an application or task. It should provide the basic framework

through which the hardware is accessible but not obsourred with unnecessary

application specific capabilities. The more specific capabilities were

believed to belong in the user level software where they would not burden all

programmers and programs. The result is a very sophisticated but simple and

intelligable operating system.

2.2 THE C PROGRAMMING LANGUAGE

Along with the UNIX operating system the C language was developed which

is based in large part on the BCPL language developed by Martin Richards. C

is the main programming language in UNIX although most other major languages

are available including LISP which is commonly used in the Artificial

Intelligence community. In fact the UNIX system itself is written entirely in

C with the exception of two machine dependent modules. This makes UNIX a very

portable system which is evidenced by the fact that UNIX has been implemented

on PDP-7, -9, -11/20, 11/34, -11/40, -11/60, -11/70, VAX-11/780, and Interdata

8/32 computers. Recent efforts have been completed to implement it on several

microprocessors namely the Intel 8086, the Zilog Z8000 and the Motorola 68000.

Therefore C makes UNIX a truly portable operating system which is not made

obsolete by new generations of hardware.

The C language itself is a structured language with modern control flow

and data structure capabilities. It is both a low and a high level language

in that it provides access to basic machine level operations, yet it is easy

to use and is totally general in application. It is not difficult to learn

and, if written properly, is easy to read. C compilers now exist for a

variety of machines and operating systems including the Honeywell 6000, the

IBM System/370, and the Interdata 8/32 as well as the DEC 11 line of

2-2

. 1 , . : ,:,.., ,= 4.

computers.

2.3 THE SHELL - THE UNIX/USER INTERFACE

The standard interface between the programmer/user and the operating

system is a command interpreter called the shell. The shell interprets user

command input and takes the appropriate action. The philosophy of the shell

stresses simplicity. Most commands are implemented in entirely separate and

independent processes. The interface between the shell and the commands is

very straightforward in that it is comprised mainly of character strings

which consist of the command and any arguments accompanying it. Special wild

card operations such as all file names containing a specific character pattern

or patterns are performed by the shell so that consistent results are obtained

system wide.

Open files can also be passed to a process by the shell (or by any

process so written) which provides a tremendous degree of flexibility in terms

of combining several basic functional processes to perform a more complex

operation. Processes combined in this manner are typically (although not

necessarily) combined in a pipeline fashion where the output of one process

becomesthe input to another. A concept of standard input and standard output

exists for each process by which this is accomplished. Standard input and

output are simply I/O channels referenced by specific file identifies called

file descriptors similar to logical units in FORTRAN. By default these

channels are the terminal from which the command was given. However, the

shell can assign any open file to these channels. An open file can be a pipe

which can be either read or written. By passing the appropriate ends of pipes

as open files corresponding to the standard inputs and outputs of the

processes, a pipeline is thus formed. Therefore, each process in the pipeline

becomes a filter that accepts data from its input, processes it in some

manner, and writes the result to its output which in turn is the input to the

next process in the pipeline.

2-3

The processes themselves are not aware of the source of their Input or

the destination of their output. The sources and destinations can be files,

pipes or devices (including terminals). In fact the UNIX tile system treats

files and devices alike in that the same naming syntax is used in forming the

identifiers called pathnames. This provides a totally general and straight-

forward mechanism for accessing system resources.

Since the shell can cause processes to be executed either singularly or

in combination, it logically follows that one can program the shell itself to

perform desired operations. To enhance this capability the shell is provided

with control-flow primitives and string-valued variables. The result is a

very high level programming capability which allows very complex operations to

be performed with very brief shell programs or scripts. A typical example of

this is the Automatic Feature Extraction System (AFES) developed by PAR under

Contract F30602-78-C-0080 which draws heavily on the shell's capabilities.

That system is made up of a variety of basic processes consisting of the

standard UNIX utilities as well as application specific modules written at

PAR, all tied together by a variety of shell programs. The result is a very

modular, flexible, and powerful system that is easy to use and manage.

The DDT system will rely upon the shell for its modularity, flexibility,

and power in much the same manner as the AFES has done. In fact, considerable

software will be drawn from AFES in building the DDT system. DDT will consist

of a variety of modules (commands) that will each perform a basic function.

A set of shell programs will also be written which will combine certain of the

basic commands to form higher level commands. In a similar manner the DDT

user may combine commands in a shell program to design experiments as desired.

The procedure for accomplishing this is simple and straightforward. No real

programming experience is required to accomplish this task.

2-4

__ _ _ _ __*..

)

2.4 SOURCE CODE CONTROL SYSTEM AND MAKE FACILITY

Finally, UNIX has a very extensive set of text handling capabilities from

controlling program source to document preparation. The programmer finds the

Source Code Control System (SCCS) to be extremely valuable. It provides an

orderly manner in which source code, independent of language, can be created,

updated, and stored. At any time the programmer can see a complete history of

a module's development as well as recover the state of the module at any stage

in its development.

Closely allied with SCCS is the Make facility. This provides a logical

mechanism through which the programmer can describe how a process or a

complete system is constructed and the dependency relationship between the

modules. After modification of any given module the programmer merely need

give a single command and the Make system will insure that all processes that

are affected by the change will be recompiled and/or rebuilt. Processes that

are not affected by the changes(s) are not rebuilt.

The AFES used the SCCS and the Make facility to provide an environment

in which an entire system can be constructed and maintained by a team of

programmers under the control of one person called the system administrator.

Each member of the team can modify any portion of the system without affecting

any other member's work. This is accomplished by localizing the changes to

the individual programmer's directory. However, the modifications can be

tested within the context of the entire system, and, when ready they can be

incorporated permanently into the system by the system administrator. This

entire capability was incorporated into the DDT system. A more detailed

discussion about this capability is contained in section 5.

2-5

3. DEANZA IP-8500 DISPLAY SYSTEM

The state-of-the art in display systems today is represented by the

DeAnza IP-8500 Display System. It has a number of features which make it very

well suited to the DDT application. Of particular importance are the flexible

memory architecture which can be reconfigured under software control. This is

especially useful in the image roaming application.

In the earlier display models, such as the IP-5500, a memory mapping

interface was available which allowed direct access to individual pixels

through the host processor's UNIBUS address space. This is very powerful for

applications requiring random access to pixels, such as image resampling. But

it is not suited for situations in which high image data I/O rates are

required, such as for image roaming. The IP-8500 was chosen for the DDT

system because of the need for an effective image roaming capability.

The major I/O path for the IP-8500 is through the Direct Memory Access

(DMA) channel. The efficiency of direct host access to refresh memory

achieved in IP-5500 was sacrificed in the interests of the added I/O speed

achievable through DMA transfers. However, much of the flexibility for loading

image memories was retained and enhanced and supports both programmed I/O and

DMA transfers. There is direct hardware support for loading display memory of

arbitrary size with image data. This feature was specifically designed to

support large image roaming.

Another major capability added to the IP-8500 is the ability to handle

large images. This is done by providing the capacity for up to twenty memory

boards each of which can be 512 x 512 x 8 bits or 1024 x 1024 x 8 bits.

Sixteen of these boards can be used as refresh memory while the remaining four

are reserved for buffer operations. The high density 1024 x 1024 boards were

not available at the time the DDT system was purchased; it has a total of 6

memory 512 X 512 X 8 bit memory boards. This configuration provides an

3-1

effective image roaming capability based on tessellated images, accompanied by

a split screen display to facilitate point positioning.

The memory boards can be configured in a variety of ways for both host

I/O operations and for image display refresh. Configurations of multiple

channels can be established under software control for I/O where each channel

can consist of rectangular arrays of memory boards up to a maximum dimension

of 2048 by 2048 (4096 by 4096 if high resolution memory boards are used).

The IP-8500 has considerable flexibility in its generation of output

video from the the imagery stored in the frame buffer. Up to four Video

Output Controllers (VOC's) can be configured in one display system where each

VOC can drive one 512 x 512 full color monitor (or 1024 x 1024 with the high

resolution option). Each monitor can have an interactive device (trackball,

joystick, or tablet), an alphanumeric overlay, and a dual cursor generator

associated with it. The four VOC's draw their inputs from the common pool of

sixteen refresh memory boards. Assignment of the memory boards to each

monitor can be done dynamically via the VOC's under software control. The

flexibility provided by these capabilities allows the single display system to

be configured as one multiple display workstation, several individual

workstations, or some combination in between.

The VOC's also provide a split screen capability which effectively allows

the refresh memory to be configured in a square array of four memory boards

for output viewing. This is extremely useful for large image roaming because

memory can be loaded in background to maintain refresh image data beyond the

currently visible portion. As the image is scrolled, the nonvisible data is

immediately available to be scrolled onto the display monitor.

The IP-8500 also supports a Digital Video Processor (DVP) which is a

pipeline processor capable of absolute or two's complement arithmetic

operations on 8 or 16 bit pixel data. The operations available are similar to

those in the IP-5532 DVP. As with that display system, the IP-8500 DVP

3-2

_ 7

performs its operations on the entire input array in one refresh frame time.

Typically such operations as convolution, correlation, edge detection, edge

enhancement, and image merge can be done with the DVP.

A possible future addition to the DDT IP-8500 configuration is a special

purpose DVP available for warping operations. That processor is capable of a

second order polynomial transformation in one-fifth of a second.

3-3

4. APPLICATION SOFTWARE

The general philosophy of the software development was to generate

modular software which separates the mensuration requirements into logical

components. The software was broken out into the following different

components:

" Display,

" Point Positioning/Mensuration,

" Digital Terrain Elevation Data,

" Image Compression/Decompression.

It is clear that the image compression and decompression algorithms

should be separate from the other aspects of the applicatior software, simply

from the standpoint that the hardware configuration of the Experimental

Photogrammetric Facility does not lend itself to a rapid throughput rate. A

rapid throughput rate would be desirable to permit viewing an image that is

stored in compacted format.

The separation of the display software from the photogrammetric software

Is a rational approach, because the viewing of an image does not normally

require the Interior or exterior orientation parameters. Also, if the two

were not separate, then the display software would have to be constantly

expanded every time a different sensor mathematical model is to be added to

the system. In that case, either the display software modules would continue

to grow In size, because of the Inclusion of the additional code, or the

display code would have to be duplicated for each different sensor system. In

either case, this causes software reliability problems for the display code.

The inclusion of additional code could cause the previously working display

'4-1

code to start failing, or improved display functions would need to be Inserted

in many different programs.

Likewise, the photogrammetric operations would be inconvenient if the

derivation of ground coordinate required one to display an image and select

the display coordinates of the desired target. This would introduce random

error from operator input, even when the image coordinates are already known.

Thus, the display and photogrammetric modules were implemented in separate

modules so that the coordinates derived from the display could then be passed

to the photogrammetric routines, while other independent methods of deriving

the image coordinates could also be passed to these modules.

The decision to separate the digital terrain elevation data from the

other software was made because RADC had another contract in which terrain

intersection techniques were being investigated. The DTED operations were

separated from the photogrammetric operations, so that the inclusion of

various or different terrain intersection algorithms would be a simplier

process.

4.1 DISPLAY SOFTWARE

The development of the display software was hindered by various factors

discussed in Section 3.0 concerning the DeAnza IP-8500. It was expected that

the software developed under the AFES contracts would be readily usable for

the DDT system. Thus, the major software effort was directed to achieving the

capability of large image roaming on the IP-8500 Display System. With the

dynamic nature of the display, and the mensuration requirement, it was

essential that the status of the display be stored. This provided a "re-

entry" capability of the "roaming" programs and provided sufficient image size

and display parameters that the coordinates of an image object could be

computed regardless of the scale and position on the display. Each of these

items are discussed in more detail in the subsections that follow.

4-2

17V

Vi

As an aside, before providing the additional discussion in the

subsections, two other issues should be mentioned: the COMTAL display and the

AFES display software.

* The CONTAL was planned to be used as an overview display, i.e. a view of

an image at a reduced resolution, thus providing a larger viewing area.

The IPS had a COMTAL driver for the RADC IPS configuration; this driver

was to be installed on the EPS within the EPF. For some reason, the

driver did not work directly on the EPF's COMTAL, thus the driver was

modified. Before the driver was completed, the hardware had a severe

problem. The IPS COMTAL was then moved to the EPF. The last attempt to

use the modified driver on that COMTAL display failed. It is not clear

whether the failure was due to a difference in the two different COMTAL

displays, or whether it was due to a software error. All display

software associated with the COMTAL was never tested.

* The AFES display software was to be incorporated into the EPF as much as

possible. The major items to be included was the image enhancement

modules. The usefulness of the enhancements is that an image interpreter

could modify the image intensities which may improve the coordinate

selection process. Unfortunately, the DeAnza IP-8500 was not upward

compatible with the previous models contained on the AFES configuration.

Furthermore, as a result of this incompatibility, no image enhancement

programs were implemented on the IP-8500.

4.1.1 Image Roaming

The need for large image roaming is apparent when one considers the

general mode of operation that an image interpreter uses to locate a portion

of the scene when using hardcopy imagery. Typically, the interpreter using

hardeopy is able to view a substantial portion of the Image, thus having

available cues to locate the desired subscene. With softeopy viewing, It is

convenient from a programmer's viewpoint to limit the viewing area to that of

4-3

- -

the display screen dimensions or the display's memory dimensions. This places

an arbitrary limit on the scene area available to the image interpreter. A

great deal of effort was expended to achieve the large image roaming

capability.

The method of achieving this capability involved optimized image storage

techniques (blocking the image in "tessellations" and storing the imagery in a

"nearly contiguous" fashion) and taking advantage of the display capability of

the IP-8500 Display System. The Importance of the optimized image storage

lies in the "timeliness" of the image roaming. It is very annoying to be

roaming an image only to have the roaming temporarily suspended while the

display updates its image contents. If the image data are not stored in

tessellated format, then roaming the image a single pixel interval in the left

or right direction would require a disk read for each of the rows of the image

stored in the display memory (just to update a single column). If the display

memory corresponds to the display viewing area, then 512 disk sector reads

would be required to obtain the 512 bytes to update the display. Even with

the storage of the image in tessellated format, the updating of each

tessellation requires the accessing of 16K bytes (128 pixels by 128 pixels)

from disk storage. Using the normal storage technique of the NWB/UNIX system

would require 32 separate system calls to read the single tessellation from

the disk. Because this would slow down the image roaming, a high speed file

access software package was developed. With this software package and

contiguous allocation, the 16K bytes of data have been accessed with 1-5

system calls irstead of 32, a substantial savings.

4.1.1.1 Tessellated Image Storage

The image format has been defined to store the image data in sub-images

or tessellations. This means that instead of storing the image in scan line

format (consisting of a stream of bytes for a single scan line, followed by

another stream of bytes for the next scan line, etc.), the image is

partitioned into sub-images, each of dimension "n-x-n", and each sub-image Is

4-4

.~
t jt

stored in scan line format, followed by the next subimage.

aaaaiaaaaalalaaalaaaalalaailaaaaaiaaaaaataallaaaaaaaaallalaalaata

1 1 2 * 3 * ... * m •

m + 1 m + 2 am+ 3 a a

a • o o n t i

stre i saline formallt fllowedlby subitagll 2,lsl bmll e 3,l...,llultmllll

3uiaem an ao an ah aieso o th teslatin ase anteD

r am ar aie aotelf rrgt a sigl dis setrad upate

piel aln ah sdofteiage ahsi a amrvmn ave th 12ds

a a a a a a a a a
aaa',aaaaaaaaaaaaaaaiaaa

Figure -1 Illustration of the Tessellated Image Format

In Figure 4-l, each rectangle corresponds to one subimage or one

tessellation. The order of the image data stored in the file is subimage 1

stored in scan line format followed by subimage 2, subimage 3 ,....,sublmage'm

subimage'm+1, and so on. The dimension of the tessellations used on the DDT

system was 128 pixels by 128 pixels. If an image is stored, this format is

roamed one pixel to the left or right, a single disk sector read updates 4

pixels along the side of the image. This is an improvement over the 512 disk

reads cited above, because the 512 pixels could be obtained by 128 disk

accesses. This by itself is not, however, adequate to achieve reasonable

4 -5

- *... V' , . !

image roaming capability. It would appear that smaller tessellation

dimensions would be more appropriate. For example, use of 64-x-64

tessellations would further reduce the disk accesses by a factor of two. The

decision to use a larger value was premised by the capability of the IP-8500

Display System, will be discussed in a subsequent subsection. In fact,

128-x'128 is the largest dimension that could be used and still achieve large

image roaming (cleanly) while viewing 2 different images in the left/right or

top/bottom display mode.

The final design allows the system to update 128-x'1024 pixels or

1024-x-128 pixels using approximately 8 disk accesses and 8 display memory

accesses. This is only possible through use of the unique combination of the

tessellation format of the image data, the high speed file routines and the

architecture of the display system.

4.1.1.2 High Speed File System

The High Speed File Routine (HSFR) package is a set of user subroutines

that allow very efficient reading and writing of large files. These routines

permit application programs to achieve raw disk speed data transfers rates

while still maintaining a UNIX file system structure. The HSFR's use the UNIX

file system data structures, but simply rearrange the data block- in the

desired order for efficient large data transfers. The HSFR's take advantage

of contiguous file allocation which permits the software and hardware overhead

of a file access to be spread over a large number of disk sectors. It also

relieves the operating system from having to buffer and copy all transferred

data. The improvement over the standard file system is substantial. Timing

results included at the end of this subsection verify this assertion.

UNIX file systems typically allocate files in an interleaved fashion.

This allows several single blocks to be processed in a single disk revolution.

In fact, a UNIX file system is usually set up in such a way that blocks are

allocated at physical address intervals where rotation latency between blocks

4-6

*

coincides with the software overhead of a single block access. The UNIX file

system is efficient for small files; however, for certain special applications

(e.g. image processing) in which it is known that large files are to be

accessed, the normal UNIX file system is inefficient. Instead of using the

standard interleaved method of generating the free block list, the HSFR system

assumes that the list was generated in numerical order.

The HSFR package is designed to work correctly (although at reduced

transfer rates) even when the files being read or written are not 100%

contiguous. This can be helpful when it is awkward to allow c creat to take

the file system off-line. The normal system file copy utilities or existing

image creation programs may be used and reasorable performance is expected. A

word of caution is in order: it is important that the file system be used

only for large files; adding and deleting small files will fragment the

ordering of the free block list and produce fragmented files.

One current problem is that if a file from a standard file system is used

with HSFR, there may be almost no contiguous blocks in it. The program memory

allocation for the physical blocks would have to be enlarged to handle all of

the blocks in the file. An alternative to enlarging the buffer is to detect

the buffer overflow and set a flag which indicates that the file should be

opened and accessed using the standard "open", "iseek", "read" and "write"

utilities. Both solutions, although degrading the performance of the data

accessing, and hence the large image roaming for images inappropriately

stored, would permit large image roaming for those cases where it was

impossible for the user to allocate sufficient contiguous storage for the

image. Neither solution was implemented.

The data presented in Table 4-1 applies to a PDP 11/45 system with an

RP06 disk. The times are for transferring 1 Mbyte file into memory. There

are 2048 sectors in a 1 Mbyte file. An RP06 has 22 sectors per track and 19

tracks per cylinder. One disk rotation can yield at most 22 sectors. A disk

seek is required after 418 sectors of a cylinder have been read.

4-7

.. .. ',- ;. , .

Table 4-1 Disk Access Performance Timings

The theoretical best possible
transfer rate with perfectly
placed disk blocks
(93 revs + 5 seeks) 1.6 sec (calculated)

512 byte block, with interleave 9
(19x9x5 revs + 5 seeks) 14.2 see (calculated)

Actual read performed on PWB/UNIX
system, 512 byte block, with
interleave = 9 15 see (measured)

Contiguous file system,
8K byte transferred/revolution
(128 revs + 5 seeks) 2.2 see (calculated)

Actual read performed on PWB/UNIX
system, 512 byte block, with
contiguous file system, 8K byte
transferred/revolution
(128 revs + 5 seeks) <3 see (measured)

The table illustrates that the HSFR performs close to the theoretical best

possible transfer rate. The use of HSFR greatly improved the effectiveness of

the large image roaming.

4.1.1.3 DeArza IP-8500 Split Screen Capability

The DeAnza IP-8500 has a split screen capability which permits

partitioning the video display into 4 parts (controlled by a horizontal and

vertical split). For each partition the display may derive the video signal

from up to 4 distinct image memory boards or channels. Since each board can

be "zoomed" and "scrolled" independently of the others, an image of dimension

4-8

1024-x~1024 could be loaded into 4 memory channels and the display used to

provide a view "window" having dimension of 512~x~512. In this manner, it is

possible to perform image roaming and zooming on any subimage of dimension

1024-x'1024 loaded into 4 memory channels. Image wrap-around will occur

unless the memory boards are scrolled with the "zero wrap around" bit enabled.

Although roaming/zooming within a 1024-x~1024 subimage is attractive, the

restriction of limiting the image interpreter's view to this subset of a large

image is what was referred to earlier in this report as a "programmer's"

convenience. The DeAnza hardware design permits "matrix mode" writes, as

opposed to the previous standard of many display systems to write a complete

scan line for every write. In matrix mode one specifies a starting x,y memory

board address and matrix dimensions. The byte stream written to the display

memory will modify only image data within that matrix having the starting x,y

coordinates as one of the corners of the matrix. By using this "random

access" addressing of the DeAnza memory, and the "wrap-around" characteristic

of the image roaming, a complete large image stored in tessellation format may

be viewed usirg image roaming. To illustrate the technique, as the image is

"roamed" to the right (i.e. the viewing window moves to the right), the image

wraps-around on the left side of the display. But as the window moves to the

right, image data associated with the tessellations to the left is then read

from the disk and written to the display memory in a manner such that this

updated scene information is the data that is "wrapped-around". Thus, the

module that performs the large image roaming manages the display registers

associated with the trackball and trackball switches, the cursor, split screen

registers, zoom/scroll registers, and the split screen video assignmerts. It

must also maintain the status of the image and the display to determine what

portion of the image must be used to update the display memory as the image Is

roamed. Finally, it must read the image data In a timely fashion. This Is

accomplished by storing the data in tessellated format and accessing the data

using the high speed file routines.

4-9

' I II .. , I l i IIl ll

4.1.2 Split Screen With Roaming

The use of split screen viewing along with roaming is desirable for the

point transfer task. Point transfer is the first step in computation of ground

coordinates of targets when the available sensor collection parameters are not

adequate to derive ground coordinates directly. Viewing the recce imagery

while also viewing a data base image facilitates point transfer.

Two programs were implemented which provide the capability to view two

separate images at the same time in a "split screen" mode. In the first case,

the program has the options to use top/bottom or left/right split screen mode,

while only one of the images has the large image roaming enabled and the other

image remains fixed. In the second case, the program is designed to display

the images in top/bottom split screen mode while having the large roaming

capability enabled alternatively between the two portions of the display.

When one image has roaming enabled, the other image remains fixed. The

technique for performing large image roaming while in the split screen mode is

similar to that for the full screen mode except that only two image memory

channels can be allocated to the roamed image. This is the case because

"split" is always fixed (at the middle of the display), thus the image can be

roamed only in the single memory board in the short dlme:3)n.

The design of the display makes it impossible to roam on both sides of

the split on the display with the roaming occurring in the horizontal

direction (in the case of top/bottom display mode) at separate rates. In the

case where the software alternates between the top and bottom large image

roaming, the spare memory boards are used to create a "fixed" image which

corresponds to the image that is not to be roamed. In this manner, the scene

may be viewed with no apparent change in context while switching to enable

roaming on the other image.

4-10

It is this program that should be used as a starting point to design and

implement suitable point transfer programs, whether the technique be as simple

as the "eye-ball" transfer technique or the more complicated analytical point

transfer technique. In the latter case, the ability to use two cursors, one

slaved to the other via a transformation might be desirable.

4.1.3 Display Status File

The display status file has two major roles in the use of the IP-8500 for

large image roaming.

" The first role is to serve as the storage medium for the "interior

orientation" information which permits the conversion of display

coordinates to image coordinates.

* The second role is to store the image scroll and zoom register values for

the memory channels. These values must be stored because the DeAnza IP-

8500 does not permit the interrogation (reading) of tho-'e registers as in

the case of nearly all of the other display registers.

The display status file is loaded with parameters wher images are loaded

into the display image channels. These parameters are used to assure cohesive

viewing when the images are manipulated by the image roamirg programs. They

also provide image coordinate information which is used to manage the image

updating portion of the large image roaming task, as well as providing

subimage locations for the display to image coordinate transformatior.

4.1.4 Re-entry

Another feature that was included in the design of the display status

file is to permit the re-ertry of any of the image roaming programs while

still preserving the current viewing scere. It is very restrictive ard

distracting to roam through an image locatirg a certain wirdow of irterest,

4-11

. ".......

only to exit the program (accidently or on purpose) and upon re-entry (or

initiation of another image roaming program) have the display provide a view

of another dndow. This can cause the analyst to lose context of the scene

while he is trying to relocate the original window of interest.

4.2 POINT POSITIONING/MENSURATION SOFTWARE

The principle function of software developed during the DDT effort was to

perform image to ground coordinate computations. This capability also exists

within the EPF on the PTS-STM hardware/software system. The difference

between that system and the DDT system is that the former uses hardcopy

imagery, while the DDT system uses softcopy imagery. Essentially, on the

PTS-STM system, the analyst "floats the dot" and the system derives the ground

coordinates using the interior orientation, exterior orientation and the

specific mathematical representation of the sensor geometry. The analyst has

the option of changing the scale and orientation of the view by using the

optics. The software uses parameters which account for these effects in the

conversion of stage coordinates to photo coordinates.

The basic operation for the softcopy point positioning/mensuration should

be basically the same. The distinction is that optics are not available to

perform changes in orientation or scale. These must be performed digitally,

i.e. the image must be "warped" to charge the scale or to orient the image to

permit viewing a stereo pair.

The software developed for the DDT system was designed ir a modular

fashion to permit much flexibility for future expansion. The basic starting

point or hypothesis is that the image-to-ground coordinate computation can be

separated into three parts, with the first two independent of the sensor used

to collect the image. These parts include:

j
4-12

" Display to Image Coordinates,

* Image Coordinates to Sensor Coordinates, and

" Sensor Coordinates to Ground Coordinates.

The first of the three is concerned with the selection of a point on the

display, which must be transformed to a specific image coordinate within the

image file's coordinate system. This operation does not require any knowledge

about the sensor system or even the interior orientation parameters. Thus,

because of its relationship to the display, the display-to-image

transformation was included as part of the display software. The second

operation is essentially an implementation of an interior orientation

transformation. Again, this operation, aside from different transformation

techniques, can be thought of as being independent of the sensor system.

Calibrated sensor coordinates are used to derive the transformation

parameters, but, once the parameters are derived, the application of the

interior orientation does not require knowledge of the sensor. It must take

into consideration any rotations or scale changes that were performed to

"bring the pair of images into stereo". Again, this may be based on the

sensor collection properties, or it could rely on a simple trial and error

procedure performed by the operator. Regardless of the technique used to

generate these trarsformations, the process of computing the sensor

coordinates using the image coordinates is still based on the application of

the warping parameters. Finally, the third operation does require sensor

specific information (contained in "photo headers" within the DDT system) and

that Information can be stored in a file corresponding to that particular

softcopy image. Different sensor types require different photo header formats

and different algorithms to perform the computation from sensor coordinates to

ground coordinates.

4....13

4.2.1 Softeopy Mensuration

The Softcopy Mensuration software was written in FORTRAN for a VAX

Computer with a VMS operating system by another contractor for the SCM

contract. Additional software was available which was also developed under

the SCM contract for RADC by another contractor. This software was interfaced

to the Digital Image Processing System (DIPS) on the EPF, but after

examination, was not considered pertinent to the DDT A&E effort. The VAX SCM

software which was used during the DDT A&E contract consisted of 2 major

modules. The first created test sensor parameters which were assumed to be

used to establish control over the input parameters, thus permitting the

output to be examined for accuracy. The second module, which was the major

component of the SCM software, it performed the following tasks:

1. "Pre-dlgestion" of the sensor exterior orientation parameter for a pair

of images.

2. Select an approximate image coordinate and compute an approximate ground

coordinate by intersecting with the ellipsoidal model of che earth.

3. Compute warping parameters for the pair of images in a neighborhood of

the selected point.

4. Perform the two image warpings that would permit the images to be viewed

In stereo.

5. Display the warped images In anaglyph mode.

6. Interact with the display to "float-the-dot."

7. Project the Image pol-ts to the ground and iterate to a ground

coordinate.

4-14

The following observations were made.

" First, the "pre-digestion " of the sensor exterior orientation parameter

was a time consuming operation and once it was performed there was no

reason to perform the operition again. Also, the software computed the

parameters for the twc images separately, although the results were

placed in a single data file.

" The computation of the warping parameters need not be re-computed

every time the program is executed. The parameters could be stored in a

file and the Images could also be warped and saved for future processing.

Even though virtual addressing on the VAX makes the warping program

easier to perform, there is still no reason to force the warping to be

performed every time the program is executed.

" The display aspects, as indicated in previous sections of the report, are

really independent of the sensor geometry, and hence can (and should) be

made a separate program.

Since the computer configuration that was used to modify the SCM software

was a VAX with a UNIX operating system, the FORTRAN code required modification

to be compatible with the f77 compiler. In ar attempt to accelerate the

modification cycle, the SCM was partitioned into more modular software. The

following modules were extracted/developed:

1. Creation of test exterior orientation parameters for a pair of images,

but stored in separate "photo headers."

2. First phase of pre-digestion of the exterior orientation parameters for

a single image.

14-15

|I Jl I II III15"

3. Edit capability for the above parameters. (This permits experimentation

to examine the accuracy trade-offs by modifyinr the exterior orientation

parameters).

4. Second phase of pre-digestion of the exterior orientation parameters.

5. The above edit capability could also be used at this point too.

6. Computation of Image warping parameters for a pair of image;. (Note that

only parameters are output - no warping is performed.)

7. Approximate computational ground coordinate from selected image

coordinate. This was modified to allow intersection with any elevation

above the ellipsoid, rather than restricting it to zero elevation above

the ellipsoid. (This serves as the "mono scopic" technique usirg a

"nominal" earth model.

B. Computational ground coordinates assuming that a pair of conjugate sensor

coordinates are known. This was performed two different ways:

* Duplicating the SCM software received. This method had obvious

software bugs in the original SCM code.

* Performing the standard "ray-intersection" technique.

Note that it was not necessary to write special software for the imagery

associated with the SCM software to perform the image warp, displaying the SCM

imagery and "floating-the-dot". These were to be developed for general

Imagery and not be restricted to the SCM imagery.

The results of the SCM software modifications were tested in a number of

ways. Unfortunately, it was impossible to certify that the results were

accurate. The original SCM source software had a program which generated a

4-16

test set of parameters for the exterior orientation parameters. The source

file also had comments which defined what the ground coordinates should be for

certain sets of image coordinates. Both SCM computed ground coordinates and

the "surveyed" ground coordinates were included In the source file. By using

these test constants, computed ground coordinates for specific image

coordinates could be compared with the answers provided in the source file.

Unfortunately, the modified software never generated answers equal to these

included in the comments, but at the same time, it was impossible for the

original software to be tested to verify that the computed coordinates agreed

with these in the source comments of the test EO generator. (Keep In mind

that the SCM software had obvious bugs, thus It is unclear whether the

original SCM software was actually generated the "computed" results reported

in the test program.)

The status of this software is that It was successfully demonstrated on

the VAX UNIX system, but has not yet been transferred to the EPF PWB/UNIX

operating system on the PDP 11/45.

4.2.2 AFES Mensuration

The mensuration software of the AFES provided a basic starting point for

the design of the DDT system for the EPF. The AFES already had mensuration

software, including image warping software to permit stereo viewing with

proper image orientation, for the frame geometry sensor. In addition to

performing the image coordinate to ground coordinate computations, the

software for stereo viewing, stereo point selection, and general ground

coordinate transformations were already available on the AFES. The file

structure convention used by AFES permitted maintaining the "history" of

interior orientations so display coordinates could readily be transformed back

to the sensor coordinate system. "History" of interior orientations refers to

the transformations used to map an image coordinate of a "daughter" image

(subimage, warped image, rotated image, etc.) to its corresponding position in

its "mother" image (which could be the original image or even a subimage,

4
{ 4-17

f!

warped image, etc. as well).

Certain limitations of the AFES were imposed by the design of its

mensuration software. In particular, the software design required "floating-

the-dot" every time a ground coordinate was desired. Likewise, there was no

facility available which permitted simply extracting image or sensor

coordinates. If sensor coordinates were known, there was no way to project

the position to the ground coordinate system. The design of the "photo

header" was limited to that of frame geometry, thus limiting the expansion to

othe sensors.

It was essential that the software available from AFES be modified so

that it met the system objectives of the DDT A&E effort. The DDT effort

required a system which could experiment with different types of sensor

geometric mathematical models, thus providing a method to access the accuracy

of various mathematical models and study trade-offs between processing time

and coordinate accuracy represented by simpler algorithms. To meet these

goals the AFES mensuration software was modularized in a manner similar to

that applied to the SCM system. The results:

" The display software was modified to compute image coordinates, using a

"pseudo-interior orientation" transformation, of points selected on a

displayed image.

* Software was implemented to transform image coordinates to sensor

coordinates using the sequence of "irterior orientations" from daughter

image to mother image. This is accomplished by using the transformation

type and parameters used to generate the daughter image from the mother

image.

o A sensor-to-grotind transformation module, was extracted from AFES, which

uses image coordinates captured in a stereoscopic fashion. This uses the

standard "ray intersection" method. The photo header is accessed via the

4-18

- - -_ __ _ _
4.- --

header name, instead of always requiring the name to be "phdr.l" and

"phdr.r". In this manner, various versions of a photo header could be

used instead of "phdr.l", thus permitting the use and comparison of

different models.

* Another sensor-to-ground transformation module, was also extracted from

the AFES software, which uses image coordinates captured in monoscopic

fashion. This module intersects the ray with the local vertical

coordinate system (with the origin stored in the photo header) at a

specific elevation. If the geographic coordinates of the ground

coordinates are requested, the elevation specified is assumed to be the

elevation above the ellipsoidal model of the earth. In this case, an

iterative algorithm was developed which performs the transition from the

"flat earth" concept of the local vertical coordinate system to the

geographic coordinates and the curvature of the earth away from the plane

within the local vertical s 3tem.

* Since no definite experiments were defined, the concept of "photo view

frame" of the AFES was not generalized or modified for inclusion in the

DDT system. It was decided that such a structure, which is appropriate

for AFES, would be awkward, if not also a limitation, within the DDT

system.

* An interior orientation parameter computation program was implemented

which uses the large image roaming software. A non-display interactive

version was also implemented. With this capability, the calibrated

sensor coordinates can be selected irteractively from ary position within

the image.

4-19

4,3 DIGITAL TERRAIN ELEVATION DATA

The mensuration software of the DDT system is intended to provide a

capability to examine the relative accuracies of stereo mensuration, mono

mensuration assuming a nominal earth model, and mono mensuration assuming that

digital terrain elevation data (DTED) is available over the area of interest.

The latter technique requires the intersection of a "projected ray" from the

sensor position with the DTED surface. During the course of the DDT A&E

contract, another RADC effort was addressing many different terrain

intersection algorithms, with the goal of determining the best one. Because

the terrain intersection algorithm was not selected yet by the other contract,

the terrain intersection algorithm which RRC was directed to implement was the

"nearest neighbor". This algorithm Is defined to be: giver a ground

coordinate, extract the elevation coordinate closest to it. Users of this

algorithm should be warned of false coordinates because the effects of rough

terrain will result in "missed peaks" when the ray is not near the vertical.

Software provided, in addition to the "nearest neighbor" algorithm

includes a routine to read a magnetic tape containing the DMA DLMS formatted

DTED information. This software will extract a subset of the data contained

within the first data file on the magnetic tape. If there are additional data

files on the same magnetic tape, the software must be modified because of the

"sentinel" files and records associated with the DMA format. Also provided

are a pair of programs to convert the disk terrain data header file from

binary to ASCII and back again.

4.4 IMAGE COMPRESSION AND DECOMPRESSION

In anticipation of the delivery of the DeAnza IP-8500, which was thought

to be similar to the AFES (IP-5500) display systems, the image compression

algorithm was implemented to use the IP-5500 series display as well as the

AFES structured image files. The IP-5500 provided random access to windows of

image data, thus It was anticipated that the information retrieval would be

4-20

- 4. -

faster than disk accessing. Thus, two pair of programs were implemented. The

first pair performs image compression; one using the display as its Input

source, and the other using a disk file as its source. The second pair

performs the image decompression; in this case the image destination is either

the display or the disk.

Performing the image compression requires a compression method. Since

there was no a priori knowledge how the image data should be quantized, a

statistics generating program was required to process the transformed

coefficients and arrive at the appropriate quantization scheme.

The result of this portion of the software development Is that an image

compression/decompression scheme exists on the DDT system. Since the software

was developed during the early phase of the contract, the incompatibility of

the IP-5500 and the IP-8500 display systems was not known. Likewise, the

design for the DDT tessellated image format occurred after the completion of

the compression/decompression implementation. Because the relative priorities

of the various tasks placed the image compression as very low priority, the

software modifications were never made to perform this processing with the

IP-8500 or with tessellated images.

4-21

5. THE DDT SYSTEM ADMINISTRATIVE CONTROL

A significant amount of time can be, and usually is, lost in any software

development project due to insufficient control of programs during the

development, integration, and subsequent modification cycle. The greater the

number of individuals involved, of course, the greater the impact of poor

program management. In the DDT system environment, all source files which are

to be incorporated into the DDT system as an include file, library routine,

command, etc., are first placed under centralized software control of the DDT

System Administrator.

5.1 CENTRALIZED SOFTWARE CONTROL

Software control is the mechanism by which the DDT system accomplishes

the task of maintaining continuity in a dynamic programming environment

(testbed). The mechanics of software control involve centralized file

ownership, monitoring of file editing, and retention of intermediate changes

(versions) to files.

5.1.1 File Ownership

With any project where multiple programmers are providing input into the

system, be it system or application programming, one of the major obstacles to

smooth integration is the problem of multiple versions of routines being used.

Invariably someone needs a routine for a specific application. Presuming he

hears that someone has written such a program, he often cannot locate the

current version. Then if he needs to modify it even slightly he usually

creates a new file. The tendency here is for a proliferation of special

purpose programs. This does not encourage the programmer to work in a modular

environment. If many people have incorporated a routine into their routines

then the task of update in case of change becomes enormous. One of the major

requirements for system development to proceed at any kind of reasonable pace

A5-1

in the above scenario is an immense overall knowledge of the system by a few

individuals. If for some reason these people leave the project, it may

require months for the project to recover.

Centralized file ownership is one of the ways the DDT system avoids the

above problems. All files which make up the DDT system are owned by the DDT

system administrator. They are stored in one of the DDT SCCS directories

according to their suffix. All program development commands access these

files in various ways for the programmer without requiring him to know where

the actual source files are located. He can therefore be sure he has the

correct copy of the file. He also has many commands at his disposal to

determine what routines are available in the DDT system and gather information

about them. He is encouraged to write routines which may be beneficial to

others through provision of an easy-to-use interface to the DDT libraries.

Easy access to all DDT files also allows a programmer to explore the software

to any depth desired. The user may place a file under DDT SCCS control via

"addfile", "addtoddt". The "addfile" command merely places the source file

under the DDT system centralized control in the form of an SCCS file. The

other command will execute "addfile" as required.

5.1.2 Source Code Control System (SCCS)

Having centralized ownership of files, the next step is to control the

modification of files. This task is accomplished using the PWB product called

the Source Code Control System (SCCS). SCCS stores the original version of a

file and all subsequent modifications to it. Any version of the file can be

produced by applying the modifications or "deltas" (as they are referred to by

SCCS), up to the the version desired, to the original file.

54 5-2

5.1.3 File Editing

When editing a file under DDT system control, the user always gets the

latest version. If he wishes some previous version to be the latest he may

execute the backup command. He never loses any of the versions, however. One

difference the programmer will notice between the listing of a file he has

retrieved via editfile from the same version retrieved via the catfile command

will be the absence of any date or time information in the documentation

boilerplate. Instead, the programmer will notice some capital letters which

are preceeded and followed by the % character. These are recognized by SCCS

and the appropriate substitutions for them are made when a listing of the

program is requested. They provide the programmer information as to the

version number, the date of the listing, date of last update, etc.

5.2 SYSTEM UPDATE

After a programmer has made changes to a file which is under DDT system

control he needs to be sure that the changes are reflected throughout the

system. This is accomplished by the DDT system administrator. A file in DDT

which is intended to be used in the system, be it an include file, subroutine,

or main routine, must be placed under DDT Make Control. The command to do

this is add to ddt.

5.2.1 File dependencies

The concept of file dependency means that one entity in the system is

dependent on one or more files in the system. Whenever any of these other

files is modified the entity needs to be updated In some manner. The entity

may be no more than a file which contains the contents of two other files; in

case of a change to either of the files, the entity is reloaded with current

versions of the files. The entity may be, however, a complex executable

module which is dependent on a number of include files, library subroutines,

and other source files. If any of these files change the module must be

5-3

• • +m • --

recompiled, and loaded.

5.2.2 Make command

The Make command in UNIX/PUB provides a mechanism by which the system can

be kept up to date in a semi-automatic manner. The DDT system administrator

is the only one who actually executes this command and he does so indirectly

via the ddtupdate or tstbed make(tst). These routines move around in the DDT

directories and get an updated copy of the Makefile for the directory and then

execute the Make command. The following is an excerpt from the makefile for

the "objl" directory as an example:

0 Makefile
0 will make all the feature commands in /u/ddt/obj$z
This is a release dependent makefile and all programs
are dependent upon shell variable $z for release I

CC = /bin/cc -O -DPWB
FC = /bin/cc -O -12
LIB = /u/ddt/lib$z
INCL z /u/ddt/incl$z
FILES = /u/ddt/sccs/files
OBJ =/u/ddt/obj$z
PROG = /u/ddt/cmd
MODUL =/u/ddt/bin$z/modules

update :makeall

makeall ::mod-fr.o
mod-fr.o $ (FILES)/s.mod -fr.c $(INCL)/photo.h

$(PROG)/copyfile mod fr.o
$(CC) -c mod fr.c -I$CINCL)
-rm -f mod fr.c

makeall :: prt-hdr.o
prt hdr.o : $(FILES)/s.prt hdr.o $(INCL)/ddt im hdr.h\

*(LIB)/error.o *(LIB)/findargs.o\
$CLIB)/df loc.o $(LIB)/df r hdr.o
$(PROG)/copyfile prt,_hdr.c
$(CC) -c prt_hdr.c -I$CINCL)

5-4"

-rm -f prthdr.c

The purpose of this excerpt from the object Makefile is to keep the object

code up to date for mod fr.o and prt hdr.o. After the object directory has been

brought up to date, the Makefile in bin$z will load the object module with

appropriate subroutines and libraries. The two are maintained separately for

clarity. The lines at the beginning of the excerpt are comments as are any

lines preceeded by the "#" sign. Next are a list of macro definitions which

may be substituted in the body of the Makefile with the $(NAME) string, where

NAME is the string to the left of the "=" in the macro definition. The first

executable line of the Makefile is always made if no argument is given, so it

is a convention of DDT to have a dummy line there which is dependent on

"makeall" which is dependent on all the items defined in the Makefile. When

"make" is executed, all items are checked and updated as required. The single

colon indicates dependency and the double colon allows for a continuation of

dependencies. In the case of mod fr.o, it is dependent on the SCCS source

file for mod fr.c, and the include file photo.h. If either of these two files

changed since the last time modfr.o was created, then the make command would

execute all of the lines following the line of dependencies up to the next

item. In this case it will get the current copy of mod fr.c, compile it and

then remove the source file mod fr.c from the object to further prevent any

proliferation of uncontrolled source files. In the case of prthdr.o, it is

dependent on the SCCS source file for prt_hdr.c, the include file

ddt im hdr.h, the ddt$z library subroutines error.o, findargs.o, dfloc.o, and

df r hdr.o. The make will proceed as with mod-fr.o.

5.2.3 Placing a Command Under DDT Make Control

As mentioned earlier, the command which allows one to place an item under

DDT Make Control is "add to ddt". This complex command is dependent on the

highly structured DDT directory layout. This command allows one to start with

either a high level item such as a command or at a lower level such as an

include file. If one starts with a command, the SCCS files will be searched

for the main routine or shell file as appropriate. If it is not found, the

5-5

t 'a,

routine "addfile" will be executed automatically for the routine. The user

will then be asked questions such as file dependencies and the same process

will be repeated for all lower level routines. Finally the Makefiles

associated with the command will be modified automatically and the user will

be prompted to add appropriate help and menu entries.

5-6

6. CONCLUSIONS AND RECOMMENDATIONS

The software developed for the DDT system in the EPF provided the

following features:

1. Modular software design which will permit the inclusion of an arbitrary

number of new or different sensor models.

2. Basic framework for experimenting with multiple sensor models for an

image.

3. Modification to the SCM software to permit monoscopic point selection and

ground coordinate derivation.

4. Large image roaming with zooming and coordinate capture capability.

5. Split screen viewing with large image roaming, zooming and coordinate

capture capability.

6. Mathematical transformations to compute image coordinates from display

coordinates, sensor coordinates from digital image coordinates and ground

coordinates from sensor coordinates.

7. Modularization of the SCM and AFES mensuration code to provide a flexible

framework to perform experimentation.

8. Contiguous file system and high speed file routines for image handling

optimization for the large image roaming capability.

9. On-line documentation of the DDT system software.

6-1

10. Administrative control over the DDT system software source, documentation

and executables.

The major deficiencies of the DDT system are the following.

Stereo viewing: The DDT system did not provide an integrated stereo viewing

capability. The absense consist primarily of no operator interface

between viewing two images in a "superimposed" fashion and selecting

display coordinates from both images. The images would be stereo

pairs displayed In the red and green channels permitting anaglyph

viewing. Software already exists on the RADC IPS using the IP-5532

display for images having a size of 512x512 and having the

appropriate relative orientation to each other.

Incomplete image warping code: It is essential to have an image warping

capability to perform the required relative orientation to align the

epipolar lines of a pair of images for stereo viewing. Warping

software was written using an affine transform and using the IP-8500

display system as the image input and output device. The software

was not tested on the DDT system and thus, never placed under DDT

adminsitrative control.

As in the case of stereo viewing, software already exists on

the RADC IPS to warp an image from one IP-5532 image display channel

to that of another using various warping transformation.

Warping transformation parameter generation: The DDT system does not have an

operator interface to interactively generate a set of warping

parameters to be used to perform an image warp. The major display

code required to perform this operation is contained In the large

multi-image roaming program "maintb" and the interior orientation

parameter computation found in the programs "ddt nt or" and

"s int or".

6-2

* *

Image enhancements: Time did not allow the Implementation of Image

enhancements routines that already existed on the RADC IPS using the

IP-5532 display. A menu containing the RADC IPS abilities is

included within the DDT system. This menu is to serve as a

"pointer" to the program names on RADC IPS so that the source files

may be obtained and modified as desired.

Point transfer capability: The DDT system does not have a user interface to

perform a computer assisted transfer of image position from one

image to a corresponding position on another image. The method to

perform this operation would be similar to that of generating the

image warping transformation parmeters. The basic starting point

for implementing such a program is a combination of the program

"maintb" and "ddt int or".

The recommendations for the improvement of the DDT system include,

besides the obvious elimination of the deficiencies cited above, are as

follows:

1. Include the panoramic sensor model in the sensor geometries (software for

this already exists on the DMA versions of the RADC IPS).

2. Include an epipolar model method of computing the image warping

coefficients to enable stereo image viewing. This software exists for

the DMA versions of the RADC IPS and is integrated into the image

scanning parameters for use on the scanners at the DMA Centers.

3. Expand the frame photo header to provide for other coordinate systems

besides geographic coordinates as the origin of the local vertical

system. UTH coordinates should be included in any redesign of the

header.

6-3

4. Integrate the appropriate DTED intersection program with monoscopic point

positioning program. That is, the DTED intersection algorithm must be

included within the sensor to ground projection, otherwise, false terrain

intersections could be derived as a result of irregular terrain.

6-4

_77..

LA

